Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### (Phenyl)(1-phenylsulfonyl-1*H*-indol-3-yl)methanone

#### G. Chakkaravarthi,<sup>a</sup>\* R. Panchatcharam,<sup>b</sup> V. Dhayalan,<sup>c</sup> A. K. Mohanakrishnan<sup>c</sup> and V. Manivannan<sup>b</sup>

<sup>a</sup>Department of Physics, CPCL Polytechnic College, Chennai 600 068, India, <sup>b</sup>Department of Research and Development, PRIST University, Vallam, Thaniavur 613 403, Tamil Nadu, India, and <sup>c</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: chakkaravarthi\_2005@yahoo.com

Received 15 October 2010; accepted 18 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.109; data-to-parameter ratio = 18.2.

In the title compound, C<sub>21</sub>H<sub>15</sub>NO<sub>3</sub>S, the sulfonyl-bound phenyl ring forms a dihedral angle of  $86.28(5)^{\circ}$  with the indole ring system. The molecular structure is stabilized by intramolecular  $C-H\cdots O$  hydrogen bonds. The crystal packing is stabilized by weak intermolecular C-H···O and  $C-H\cdots\pi$  interactions.

#### **Related literature**

For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).



#### **Experimental**

Crystal data  $C_{21}H_{15}NO_3S$ 

 $M_r = 361.40$ 

| Triclinic, P1                   |  |
|---------------------------------|--|
| a = 7.567 (1)  Å                |  |
| b = 10.571 (2) Å                |  |
| c = 12.083 (3) Å                |  |
| $\alpha = 66.302 \ (2)^{\circ}$ |  |
| $\beta = 80.740 \ (1)^{\circ}$  |  |
| $\gamma = 78.403 \ (1)^{\circ}$ |  |

#### Data collection

| Bruker Kappa APEXII                          | 15638 measured reflections             |
|----------------------------------------------|----------------------------------------|
| diffractometer                               | 4276 independent reflections           |
| Absorption correction: multi-scan            | 3187 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)                    | $R_{\rm int} = 0.026$                  |
| $T_{\rm min} = 0.952, \ T_{\rm max} = 0.960$ | Standard reflections: 0                |
|                                              |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | 2 restraints                                              |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.109$               | H-atom parameters constrained                             |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 4276 reflections                | $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$  |
| 235 parameters                  |                                                           |

#### Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C16-C21 ring.

| $D - H \cdots A$                                                                    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------------------------------------------|------|-------------------------|--------------|---------------------------|
| $C13-H13\cdots O1$ $C6-H6\cdots O2^{i}$ $C7-H7\cdots O2^{i}$ $C4-H4\cdots Cg1^{ii}$ | 0.93 | 2.42                    | 2.999 (2)    | 120                       |
|                                                                                     | 0.93 | 2.58                    | 3.493 (2)    | 167                       |
|                                                                                     | 0.93 | 2.54                    | 3.429 (2)    | 160                       |
|                                                                                     | 0.93 | 2.98                    | 3.774 (3)    | 144                       |

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge DV University of Madras for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5379).

#### References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.

Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, 0542.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

### organic compounds

V = 863.5 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.24 \times 0.22 \times 0.20 \text{ mm}$ 

 $\mu = 0.21 \text{ mm}^{-1}$ T = 295 K

7 - 2

supplementary materials

Acta Cryst. (2010). E66, o2895 [doi:10.1107/81600536810042261]

### (Phenyl)(1-phenylsulfonyl-1*H*-indol-3-yl)methanone

### G. Chakkaravarthi, R. Panchatcharam, V. Dhayalan, A. K. Mohanakrishnan and V. Manivannan

#### Comment

The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported values of similar structures (Chakkara-varthi *et al.*, 2007; Chakkaravarthi *et al.*, 2008). The phenyl rings C1—C6 and C16—C21 form the dihedral angles of 86.28 (5)° and 51.91 (5)°, respectively with the indole ring system. The mean planes of the two phenyl rings are inclined at an angle of 42.16 (6)°.

The sum of the bond angles around N1 [358.53°] indicates that N1 atom is  $sp^2$  hybridized. The molecular structure is stabilized by intra molecular C—H···O hydrogen bonds and the crystal packing is stabilized by weak intermolecular C—H···O and C—H··· $\pi$  [C4—H4···Cg1 (1 - x, -y, -z) distance of 3.774 (3)Å (Cg1 is the centroid of the ring defined by the atoms C16—C21)] interactions.

#### **Experimental**

To a solution of 1-phenylsulfonyl-(1*H*-indol-3-yl)(phenyl)methanol (1 g, 2.75 mmol) in dry 1,2-Dichloroethane (30 ml), manganese dioxide (6 g. 68.96 mmol) was added then stirred at room temperature for 4 h and then refluxed for 3 h. Then the resulting solution was passed through celite pad and washed with DCM (2 x 30 ml). Removal of solvent followed by crystallization from methanol afforded the compound as a colourless crystal.

#### Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and  $U_{iso}(H) = 1.2Ueq(C)$  for aromatic C—H. The components of the anisotropic displacement parameters in direction of the bond of C3and C4; C18 and C19 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in *SHELXL* (Sheldrick, 2008).

#### **Figures**



Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.



Fig. 2. The packing of (I), viewed down the *a* axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

### (Phenyl)(1-phenylsulfonyl-1*H*-indol-3-yl)methanone

| Crystal data                                      |                                                       |
|---------------------------------------------------|-------------------------------------------------------|
| C <sub>21</sub> H <sub>15</sub> NO <sub>3</sub> S | Z = 2                                                 |
| $M_r = 361.40$                                    | F(000) = 376                                          |
| Triclinic, $P\overline{1}$                        | $D_{\rm x} = 1.390 {\rm Mg m}^{-3}$                   |
| Hall symbol: -P 1                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.567 (1)  Å                                  | Cell parameters from 6196 reflections                 |
| b = 10.571 (2) Å                                  | $\theta = 2.2 - 27.1^{\circ}$                         |
| c = 12.083 (3) Å                                  | $\mu = 0.21 \text{ mm}^{-1}$                          |
| $\alpha = 66.302 \ (2)^{\circ}$                   | T = 295  K                                            |
| $\beta = 80.740 \ (1)^{\circ}$                    | Block, colourless                                     |
| $\gamma = 78.403 \ (1)^{\circ}$                   | $0.24 \times 0.22 \times 0.20 \text{ mm}$             |
| $V = 863.5 (3) \text{ Å}^3$                       |                                                       |

#### Data collection

| Bruker Kappa APEXII<br>diffractometer                          | 4276 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3187 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.026$                                                     |
| $\omega$ and $\phi$ scans                                      | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.952, T_{\max} = 0.960$                           | $k = -14 \rightarrow 13$                                                  |
| 15638 measured reflections                                     | $l = -16 \rightarrow 16$                                                  |
| 15638 measured reflections                                     | $l = -16 \rightarrow 16$                                                  |

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.037$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.109$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.01                 | $w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.1447P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 4276 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 235 parameters                  | $\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$                               |
|                                 |                                                                                     |

supplementary materials

| -  |            |
|----|------------|
| ʻ) | rootrointo |
| 1. | resnamns   |
| _  | 1000100000 |

# $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

|     | x            | У             | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|---------------|---------------|-------------------------------|
| C1  | 0.7233 (2)   | 0.05722 (16)  | 0.20701 (13)  | 0.0494 (4)                    |
| C2  | 0.6154 (3)   | 0.0869 (2)    | 0.29978 (15)  | 0.0648 (5)                    |
| H2  | 0.6523       | 0.1388        | 0.3360        | 0.078*                        |
| C3  | 0.4508 (3)   | 0.0376 (2)    | 0.33759 (18)  | 0.0791 (5)                    |
| Н3  | 0.3759       | 0.0567        | 0.3997        | 0.095*                        |
| C4  | 0.3975 (3)   | -0.0394 (2)   | 0.2838 (2)    | 0.0806 (6)                    |
| H4  | 0.2866       | -0.0718       | 0.3097        | 0.097*                        |
| C5  | 0.5061 (3)   | -0.0687 (2)   | 0.1928 (2)    | 0.0757 (5)                    |
| Н5  | 0.4690       | -0.1215       | 0.1575        | 0.091*                        |
| C6  | 0.6701 (2)   | -0.02074 (19) | 0.15289 (17)  | 0.0615 (4)                    |
| H6  | 0.7440       | -0.0403       | 0.0906        | 0.074*                        |
| C14 | 0.80636 (19) | 0.40437 (16)  | 0.04797 (13)  | 0.0448 (3)                    |
| C13 | 0.7914 (2)   | 0.44779 (18)  | 0.14366 (15)  | 0.0547 (4)                    |
| H13 | 0.8305       | 0.3873        | 0.2188        | 0.066*                        |
| C12 | 0.7164 (2)   | 0.5838 (2)    | 0.12251 (18)  | 0.0641 (5)                    |
| H12 | 0.7018       | 0.6157        | 0.1853        | 0.077*                        |
| C11 | 0.6617 (3)   | 0.6751 (2)    | 0.00966 (19)  | 0.0681 (5)                    |
| H11 | 0.6130       | 0.7671        | -0.0019       | 0.082*                        |
| C10 | 0.6778 (2)   | 0.63262 (18)  | -0.08489 (17) | 0.0609 (4)                    |
| H10 | 0.6412       | 0.6948        | -0.1603       | 0.073*                        |
| C9  | 0.75050 (19) | 0.49375 (16)  | -0.06607 (14) | 0.0472 (3)                    |
| C8  | 0.7882 (2)   | 0.41551 (16)  | -0.14359 (13) | 0.0474 (3)                    |
| C7  | 0.86292 (19) | 0.28383 (16)  | -0.07641 (12) | 0.0469 (3)                    |
| H7  | 0.8982       | 0.2113        | -0.1040       | 0.056*                        |
| C15 | 0.7413 (2)   | 0.46868 (18)  | -0.26928 (14) | 0.0546 (4)                    |
| C16 | 0.8200 (2)   | 0.39033 (18)  | -0.34881 (13) | 0.0553 (4)                    |
| C21 | 0.9990 (3)   | 0.32957 (19)  | -0.35204 (14) | 0.0634 (5)                    |
| H21 | 1.0737       | 0.3291        | -0.2978       | 0.076*                        |
| C20 | 1.0679 (3)   | 0.2692 (2)    | -0.43577 (17) | 0.0807 (6)                    |
| H20 | 1.1893       | 0.2301        | -0.4391       | 0.097*                        |
| C19 | 0.9549 (4)   | 0.2676 (2)    | -0.51451 (18) | 0.0891 (6)                    |
| H19 | 1.0000       | 0.2259        | -0.5700       | 0.107*                        |
| C18 | 0.7771 (4)   | 0.3274 (3)    | -0.51087 (19) | 0.0900 (6)                    |
| H18 | 0.7017       | 0.3266        | -0.5642       | 0.108*                        |
| C17 | 0.7103 (3)   | 0.3879 (2)    | -0.42929 (16) | 0.0742 (5)                    |
| H17 | 0.5894       | 0.4283        | -0.4275       | 0.089*                        |
| N1  | 0.87874 (17) | 0.27365 (13)  | 0.04012 (10)  | 0.0461 (3)                    |
| O1  | 0.98538 (16) | 0.15404 (13)  | 0.24616 (10)  | 0.0602 (3)                    |
| O2  | 1.04747 (14) | 0.03484 (12)  | 0.10209 (10)  | 0.0543 (3)                    |
| O3  | 0.63449 (19) | 0.57703 (15)  | -0.30880 (11) | 0.0789 (4)                    |
| S1  | 0.92933 (5)  | 0.12195 (4)   | 0.15505 (3)   | 0.04628 (13)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# Atomic displacement parameters $(Å^2)$

|            | $U^{11}$    | $U^{22}$    | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|------------|-------------|-------------|--------------|--------------|---------------|---------------|
| C1         | 0.0554 (8)  | 0.0428 (8)  | 0.0381 (7)   | 0.0021 (7)   | -0.0076 (6)   | -0.0064 (6)   |
| C2         | 0.0723 (11) | 0.0626 (11) | 0.0470 (9)   | -0.0010 (9)  | 0.0007 (8)    | -0.0146 (8)   |
| C3         | 0.0696 (12) | 0.0795 (14) | 0.0578 (11)  | 0.0037 (10)  | 0.0110 (9)    | -0.0082 (9)   |
| C4         | 0.0579 (10) | 0.0687 (13) | 0.0827 (14)  | -0.0089 (9)  | -0.0036 (10)  | 0.0032 (9)    |
| C5         | 0.0669 (11) | 0.0698 (13) | 0.0848 (14)  | -0.0156 (10) | -0.0104 (10)  | -0.0201 (11)  |
| C6         | 0.0619 (10) | 0.0604 (11) | 0.0593 (10)  | -0.0069 (8)  | -0.0060 (8)   | -0.0209 (8)   |
| C14        | 0.0447 (7)  | 0.0433 (8)  | 0.0444 (7)   | -0.0093 (6)  | -0.0023 (6)   | -0.0140 (6)   |
| C13        | 0.0606 (9)  | 0.0553 (10) | 0.0513 (9)   | -0.0105 (8)  | -0.0034 (7)   | -0.0234 (8)   |
| C12        | 0.0666 (10) | 0.0632 (12) | 0.0739 (12)  | -0.0113 (9)  | -0.0011 (9)   | -0.0391 (10)  |
| C11        | 0.0712 (11) | 0.0486 (10) | 0.0844 (13)  | -0.0044 (8)  | -0.0049 (10)  | -0.0280 (10)  |
| C10        | 0.0611 (10) | 0.0473 (9)  | 0.0632 (10)  | -0.0049 (8)  | -0.0074 (8)   | -0.0107 (8)   |
| C9         | 0.0440 (7)  | 0.0465 (8)  | 0.0456 (8)   | -0.0096 (6)  | -0.0016 (6)   | -0.0115 (6)   |
| C8         | 0.0483 (8)  | 0.0496 (9)  | 0.0386 (7)   | -0.0083 (6)  | -0.0041 (6)   | -0.0105 (6)   |
| C7         | 0.0535 (8)  | 0.0499 (9)  | 0.0359 (7)   | -0.0072 (7)  | -0.0052 (6)   | -0.0149 (6)   |
| C15        | 0.0546 (8)  | 0.0571 (10) | 0.0403 (8)   | -0.0080 (7)  | -0.0082 (7)   | -0.0053 (7)   |
| C16        | 0.0677 (10) | 0.0550 (10) | 0.0337 (7)   | -0.0120 (8)  | -0.0094 (7)   | -0.0041 (7)   |
| C21        | 0.0728 (11) | 0.0691 (12) | 0.0399 (8)   | -0.0044 (9)  | -0.0087 (8)   | -0.0138 (8)   |
| C20        | 0.1019 (15) | 0.0786 (14) | 0.0471 (10)  | 0.0032 (12)  | 0.0000 (10)   | -0.0194 (9)   |
| C19        | 0.1479 (17) | 0.0736 (14) | 0.0441 (9)   | -0.0172 (13) | -0.0036 (12)  | -0.0223 (10)  |
| C18        | 0.1306 (15) | 0.0951 (17) | 0.0512 (10)  | -0.0334 (13) | -0.0220 (12)  | -0.0222 (11)  |
| C17        | 0.0873 (13) | 0.0821 (14) | 0.0465 (9)   | -0.0182 (11) | -0.0203 (9)   | -0.0097 (9)   |
| N1         | 0.0566 (7)  | 0.0434 (7)  | 0.0357 (6)   | -0.0037 (6)  | -0.0071 (5)   | -0.0132 (5)   |
| 01         | 0.0728 (7)  | 0.0643 (7)  | 0.0457 (6)   | -0.0020 (6)  | -0.0197 (5)   | -0.0220 (5)   |
| O2         | 0.0551 (6)  | 0.0540 (7)  | 0.0498 (6)   | 0.0039 (5)   | -0.0072 (5)   | -0.0205 (5)   |
| 03         | 0.0817 (9)  | 0.0791 (9)  | 0.0539 (7)   | 0.0174 (7)   | -0.0184 (6)   | -0.0119 (7)   |
| <b>S</b> 1 | 0.0526 (2)  | 0.0470 (2)  | 0.03579 (19) | 0.00011 (16) | -0.00991 (15) | -0.01356 (15) |

### Geometric parameters (Å, °)

| C1—C2   | 1.381 (2)   | C10—H10 | 0.9300      |
|---------|-------------|---------|-------------|
| C1—C6   | 1.386 (2)   | С9—С8   | 1.444 (2)   |
| C1—S1   | 1.7498 (17) | C8—C7   | 1.356 (2)   |
| C2—C3   | 1.384 (3)   | C8—C15  | 1.468 (2)   |
| С2—Н2   | 0.9300      | C7—N1   | 1.3913 (18) |
| C3—C4   | 1.375 (3)   | С7—Н7   | 0.9300      |
| С3—Н3   | 0.9300      | C15—O3  | 1.227 (2)   |
| C4—C5   | 1.364 (3)   | C15—C16 | 1.490 (2)   |
| C4—H4   | 0.9300      | C16—C21 | 1.379 (2)   |
| C5—C6   | 1.376 (3)   | C16—C17 | 1.387 (2)   |
| С5—Н5   | 0.9300      | C21—C20 | 1.385 (3)   |
| С6—Н6   | 0.9300      | C21—H21 | 0.9300      |
| C14—C13 | 1.387 (2)   | C20—C19 | 1.385 (3)   |
| C14—C9  | 1.397 (2)   | C20—H20 | 0.9300      |
| C14—N1  | 1.4152 (19) | C19—C18 | 1.369 (3)   |
| C13—C12 | 1.370 (2)   | С19—Н19 | 0.9300      |

| С13—Н13     | 0.9300      | C18—C17         | 1.361 (3)    |
|-------------|-------------|-----------------|--------------|
| C12—C11     | 1.388 (3)   | C18—H18         | 0.9300       |
| С12—Н12     | 0.9300      | С17—Н17         | 0.9300       |
| C11—C10     | 1.366 (3)   | N1—S1           | 1.6677 (12)  |
| C11—H11     | 0.9300      | O1—S1           | 1.4195 (11)  |
| С10—С9      | 1.399 (2)   | O2—S1           | 1.4195 (11)  |
| C2—C1—C6    | 121.26 (17) | С7—С8—С9        | 107.38 (13)  |
| C2—C1—S1    | 119.33 (14) | C7—C8—C15       | 127.21 (15)  |
| C6—C1—S1    | 119.39 (12) | C9—C8—C15       | 125.29 (15)  |
| C1—C2—C3    | 118.46 (19) | C8—C7—N1        | 109.68 (13)  |
| C1—C2—H2    | 120.8       | С8—С7—Н7        | 125.2        |
| C3—C2—H2    | 120.8       | N1—C7—H7        | 125.2        |
| C4—C3—C2    | 120.39 (18) | O3—C15—C8       | 119.99 (16)  |
| С4—С3—Н3    | 119.8       | O3—C15—C16      | 119.61 (14)  |
| С2—С3—Н3    | 119.8       | C8—C15—C16      | 120.39 (14)  |
| C5—C4—C3    | 120.5 (2)   | C21—C16—C17     | 118.93 (18)  |
| C5—C4—H4    | 119.7       | C21—C16—C15     | 123.05 (15)  |
| C3—C4—H4    | 119.7       | C17—C16—C15     | 117.84 (17)  |
| C4—C5—C6    | 120.5 (2)   | C16—C21—C20     | 120.24 (18)  |
| С4—С5—Н5    | 119.8       | C16—C21—H21     | 119.9        |
| С6—С5—Н5    | 119.8       | C20—C21—H21     | 119.9        |
| C5—C6—C1    | 118.91 (18) | C21—C20—C19     | 119.5 (2)    |
| С5—С6—Н6    | 120.5       | C21—C20—H20     | 120.2        |
| C1—C6—H6    | 120.5       | С19—С20—Н20     | 120.2        |
| C13—C14—C9  | 122.50 (15) | C18—C19—C20     | 120.2 (2)    |
| C13—C14—N1  | 130.70 (14) | С18—С19—Н19     | 119.9        |
| C9—C14—N1   | 106.78 (13) | С20—С19—Н19     | 119.9        |
| C12—C13—C14 | 117.03 (16) | C17—C18—C19     | 120.1 (2)    |
| C12—C13—H13 | 121.5       | C17—C18—H18     | 120.0        |
| C14—C13—H13 | 121.5       | C19—C18—H18     | 120.0        |
| C13—C12—C11 | 121.58 (17) | C18—C17—C16     | 121.0 (2)    |
| C13—C12—H12 | 119.2       | С18—С17—Н17     | 119.5        |
| C11—C12—H12 | 119.2       | С16—С17—Н17     | 119.5        |
| C10-C11-C12 | 121.37 (17) | C7—N1—C14       | 108.35 (12)  |
| C10-C11-H11 | 119.3       | C7—N1—S1        | 123.27 (10)  |
| C12—C11—H11 | 119.3       | C14—N1—S1       | 126.91 (10)  |
| C11—C10—C9  | 118.68 (17) | O2—S1—O1        | 120.91 (7)   |
| C11—C10—H10 | 120.7       | O2—S1—N1        | 105.43 (7)   |
| C9—C10—H10  | 120.7       | O1—S1—N1        | 106.66 (7)   |
| C14—C9—C10  | 118.82 (15) | O2—S1—C1        | 108.92 (7)   |
| C14—C9—C8   | 107.78 (14) | O1—S1—C1        | 109.22 (7)   |
| С10—С9—С8   | 133.37 (15) | N1—S1—C1        | 104.41 (7)   |
| C6-C1-C2-C3 | -0.4 (3)    | C8—C15—C16—C21  | -42.0 (2)    |
| S1—C1—C2—C3 | 178.44 (13) | O3—C15—C16—C17  | -35.9 (2)    |
| C1—C2—C3—C4 | 0.2 (3)     | C8—C15—C16—C17  | 142.89 (16)  |
| C2—C3—C4—C5 | 0.2 (3)     | C17—C16—C21—C20 | 1.0 (3)      |
| C3—C4—C5—C6 | -0.5 (3)    | C15—C16—C21—C20 | -174.08 (16) |
| C4—C5—C6—C1 | 0.3 (3)     | C16—C21—C20—C19 | -1.4 (3)     |

# supplementary materials

| C2—C1—C6—C5     | 0.2 (3)      | C21—C20—C19—C18 | 1.1 (3)      |
|-----------------|--------------|-----------------|--------------|
| S1—C1—C6—C5     | -178.69 (14) | C20-C19-C18-C17 | -0.4 (4)     |
| C9—C14—C13—C12  | 0.7 (2)      | C19—C18—C17—C16 | 0.0 (3)      |
| N1-C14-C13-C12  | 178.95 (15)  | C21—C16—C17—C18 | -0.3 (3)     |
| C14—C13—C12—C11 | -1.5 (3)     | C15—C16—C17—C18 | 175.06 (18)  |
| C13-C12-C11-C10 | 1.0 (3)      | C8—C7—N1—C14    | 1.51 (16)    |
| C12-C11-C10-C9  | 0.3 (3)      | C8—C7—N1—S1     | 168.55 (10)  |
| C13-C14-C9-C10  | 0.5 (2)      | C13—C14—N1—C7   | -179.63 (15) |
| N1-C14-C9-C10   | -178.11 (13) | C9—C14—N1—C7    | -1.22 (16)   |
| C13—C14—C9—C8   | 179.08 (14)  | C13—C14—N1—S1   | 13.9 (2)     |
| N1-C14-C9-C8    | 0.51 (16)    | C9—C14—N1—S1    | -167.65 (10) |
| C11-C10-C9-C14  | -1.0 (2)     | C7—N1—S1—O2     | 33.46 (13)   |
| C11—C10—C9—C8   | -179.16 (16) | C14—N1—S1—O2    | -161.98 (12) |
| C14—C9—C8—C7    | 0.40 (16)    | C7—N1—S1—O1     | 163.18 (12)  |
| C10-C9-C8-C7    | 178.74 (17)  | C14—N1—S1—O1    | -32.27 (14)  |
| C14—C9—C8—C15   | 176.58 (14)  | C7—N1—S1—C1     | -81.25 (13)  |
| C10-C9-C8-C15   | -5.1 (3)     | C14—N1—S1—C1    | 83.30 (13)   |
| C9—C8—C7—N1     | -1.18 (17)   | C2—C1—S1—O2     | 155.20 (12)  |
| C15—C8—C7—N1    | -177.26 (14) | C6—C1—S1—O2     | -25.92 (15)  |
| C7—C8—C15—O3    | 161.36 (17)  | C2-C1-S1-O1     | 21.21 (15)   |
| C9—C8—C15—O3    | -14.1 (2)    | C6—C1—S1—O1     | -159.91 (13) |
| C7—C8—C15—C16   | -17.5 (2)    | C2—C1—S1—N1     | -92.56 (13)  |
| C9—C8—C15—C16   | 167.13 (14)  | C6—C1—S1—N1     | 86.32 (14)   |
| O3-C15-C16-C21  | 139.19 (18)  |                 |              |

### Hydrogen-bond geometry (Å, °)

### Cg1 is the centroid of the C16–C21 ring.

| D—H···A                                                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|------------------------------------------------------------|-------------|--------------|--------------|------------------------------------|
| С2—Н2…О1                                                   | 0.93        | 2.59         | 2.934 (2)    | 103                                |
| С10—Н10…ОЗ                                                 | 0.93        | 2.57         | 3.068 (3)    | 114                                |
| С13—Н13…О1                                                 | 0.93        | 2.42         | 2.999 (2)    | 120                                |
| C6—H6···O2 <sup>i</sup>                                    | 0.93        | 2.58         | 3.493 (2)    | 167                                |
| C7—H7···O2 <sup>i</sup>                                    | 0.93        | 2.54         | 3.429 (2)    | 160                                |
| C4—H4…Cg1 <sup>ii</sup>                                    | 0.93        | 2.98         | 3.774 (3)    | 144                                |
| Symmetry codes: (i) $-x+2, -y, -z$ ; (ii) $-x+1, -y, -z$ . |             |              |              |                                    |



Fig. 1

Fig. 2

